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Abstract 

The over-precision bias refers to the tendency for individuals to believe that their predictions are 

much more accurate than they really are. We investigated whether this type of overconfidence is 

moderated by how task-relevant information is obtained. We contrast cases in which individuals were 

presented with information about two options with equal average performance – one with low variance 

the other with high variance – in experience format (i.e., observed individual performance outcomes 

sequentially) or description format (i.e., presented with a summary of the outcome distribution). Across 

three experiments, we found that those learning from description tended to be over-precise whereas those 

learning from experience were under-precise. These differences were driven by a relatively better 

calibrated representation of the underlying outcome distribution by those presented with experience-based 

information. We argue that those presented with experience-based information have better learning due to 

more opportunities for prediction-error. 
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Better Calibration When Predicting from Experience (Rather Than Description) 

Robert Nardelli became CEO of Home Depot in December 2000 after an exhaustive external search 

by the board of directors (Lublin, Murray, & Brooks, 2000). Nardelli dramatically overhauled the 

company and replaced its entrepreneurial culture of innovative product design with one focused on 

relentless cost-cutting. During Nardelli's seven-year tenure, Home Depot stock remained stable while its 

competitor, Lowe’s, stock doubled (Ries, 2007). Subsequently, Condé Nast Portfolio named Nardelli as 

one of the “Worst American CEOs of All Time” (CNBC, 2009). After Nardelli resigned as CEO on 

January 3, 2007, the Home Depot board promoted Frank Blake, who had worked diligently at the 

company for 5 years. During Blake’s seven-year tenure as CEO, the company consistently outperformed 

Lowe’s with stock rising by more than 145% and customer satisfaction increasing steadily each year 

(Aluise, 2012).   

One of the key differences between the hires of Nardelli and Blake is that the former was brought in 

to be CEO whereas the latter was promoted to CEO. Although many factors likely determined the board’s 

CEO decision, the one we focus on here is the way the board learned about the capabilities of these two 

men. Nardelli was learned about, in a large part, based on the strength of his achievements as described in 

his curriculum vitæ and by referees. In contrast, Blake was learned about, in a large part, based on the 

strength of his achievements as directly experienced by the board during his time as executive vice 

president of Home Depot. Could this difference in learning format – what we will refer to as description 

versus experience – have contributed to the quality of the board’s decision and their confidence in it? In 

trying to answer this question, we draw on two phenomena from the prediction and risky choice literature: 

the over-precision bias and the description-experience gap.  

A common finding in the prediction literature is a type of overconfidence called the “over-precision 

bias”: excessive certainty regarding the accuracy of one’s judgments (Moore & Healy, 2008). Over-

precision could manifest as the Home Depot board over-estimating the positive effect of their new CEO 

hire on future stock prices. Such over-precision has been implicated in a range of real-world situations 
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including trading decisions (Odean, 1998), insurance purchase decisions (Silver, 2012), and advice taking 

(Yaniv, 2004).  

A common finding in the risky choice literature is the “description-experience gap”: choices made 

between risky options often vary depending on the format by which choice-relevant information is 

presented (Hertwig, Barron, Weber, & Erev, 2004; Hertwig, Hogarth, & Lejarraga, 2018). The two 

formats most frequently contrasted in this literature are descriptions and experiences. Experience formats 

involve the sequential presentation of outcome information in the form of individual statements (e.g., a 

daily summary report over a two-week period read each day by a front-line manager). In contrast, 

descriptive formats involve the simultaneous presentation of outcome and probability information in the 

form of summary statements (e.g., a quarterly summary report read by an executive-level manager). The 

bulk of this research has found that equivalent risky choice scenarios often produce divergent preferences 

such that those who learn from description appear to choose as if more strongly overweighting low 

probability outcomes (Hertwig & Erev, 2009). Such a description-experience choice gap could manifest 

as a front-line and executive-level manager disagreeing about which worker is the better performer. In the 

last decade, the description-experience distinction has sparked broad insights into a range of related areas 

including investment risk appetite (Kaufmann, Weber, & Haisley, 2013), responses to climate change 

(Newell, Rakow, Yechiam, & Sambur, 2016; Weber, 2006), consumers use of online review scores 

(Camilleri, 2017; Wulff, Hills, & Hertwig, 2014), doctor-patient interactions (Li, Rakow, & Newell, 

2009), and responses to terrorist threats (Yechiam, Barron, & Erev, 2005). 

The question posed and answered in this paper is a simple one: Does the format by which 

information is presented – description or experience – influence prediction precision and, if so, why? The 

answer to this question is important because decision-makers often have an option regarding the format 

with which to receive information, and thus a clear answer to our question could be used to strategically 

tailor information. Even in contexts where information format cannot be tailored, an answer to our 

question could provide needed insight regarding where to direct de-biasing interventions.  
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The Over-precision Bias 

Overconfidence has been defined in numerous ways (Moore & Healy, 2008). The type of 

overconfidence focused on here is called over-precision and is supported by a large literature 

demonstrating that people have much more confidence in the accuracy of their beliefs than those beliefs 

warrant (Moore, Tenney, & Haran, 2015). In a typical demonstration, individuals are asked to estimate 

some uncertain outcome – such as the high temperature in Sydney on the first day of next summer – by 

constructing a confidence interval around it. For example, an 80% confidence interval is constructed such 

that the person is 80% sure that the true value falls between two interval limits. In most instances, the hit 

rate of these predictions – that is, the percentage of intervals that include the true outcome – was less than 

the assigned confidence level (Moore & Healy, 2008). For example, Soll and Klayman (2004) asked 

participants to construct fifty confidence intervals across a range of domains. Overall, participants’ 80% 

intervals contained the correct answer only 48% of the time. 

Several theories have been proposed to explain the over-precision bias. According to an anchoring 

account, people provide confidence intervals that are too close to the best estimate (Tversky & 

Kahneman, 1974). According to a conversational norms account, people prefer to be informative at the 

expense of being accurate (Yaniv & Foster, 1995). According to a naïve intuitive statistician account, 

people make estimates based on a small sample and that sample often underestimates the variance in the 

population (Juslin, Winman, & Hansson, 2007). However, none of these theories has satisfactorily 

explained all of the observed phenomena (Moore, Tenney, et al., 2015). 

A notable feature of typical over-precision designs is that no learning takes place during the study. 

Rather, predictions are based on pre-existing knowledge brought into the study that was originally 

acquired for other purposes and in other contexts. For example, reflect on the knowledge you would bring 

to bear when making a prediction about Sydney’s temperature. We believe this approach hinders 

theoretical progress because each person has different knowledge, and thus the source of the over-

precision bias cannot be isolated. For example, the bias may derive from inaccurate knowledge, 

inappropriate extrapolation from existing knowledge, or both. There are two notable exceptions.  
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First, Goldstein and Rothschild (2014) examined over-precision in the context of “experience-based” 

knowledge. Participants learned about 100 outcomes that were sequentially presented. Participants were 

later asked to estimate their confidence in predicting the outcome of a new sample from the same 

distribution. Estimates were elicited by one of several stated formats (e.g., 80% confidence interval, 

fractiles) or by asking the participants to build a complete outcome distribution using a graphical interface 

(similar to the SPIES method; see Haran, Moore, & Morewedge, 2010). Note that by using this design the 

participant’s prediction-relevant knowledge was known. Therefore, the researchers could calculate the 

accuracy of predictions in terms of the difference between the participant’s prediction and the prediction 

of a rational agent with perfect memory. The researchers observed that, after learning from experience, 

predictions elicited via the graphical method were precise. For example, the 80% intervals derived from 

the graphical interface contained the correct answer 82% of the time. This is one of the few occasions in 

which over-precision has not been observed and suggests the intriguing possibility that experience-based 

learning may have a different effect on precision judgments. However, over-precision was obtained when 

measured using other elicitation methods. For example, the 80% intervals derived from the stated fractile 

method contained the correct answer just 48% of the time. 

Second, Moore, Carter, and Yang (2015; Study 1) examined over-precision in the context of 

“description-based” knowledge. Participants were asked to provide estimates to questions that completely 

specified the outcomes and their probabilities. For example, a lottery question read: “Suppose you are 

planning to participate in a lottery game. Each day there is a 60% chance you will win $1 and a 40% 

chance that you will lose $1. How much money will you end up with after 500 days?” Note again how the 

participant’s prediction-relevant knowledge was known and therefore the researchers could calculate the 

accuracy of predictions. The researchers observed that, after learning from description, predictions were 

inaccurate. For example, the 90% confidence intervals contained the correct answer 70% of the time. 

Interestingly, this over-precision was due to the intervals being centered on the incorrect value rather than 

being too narrow. In fact, the intervals were, on average, much wider than necessary. 
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Our literature review highlights several lessons. First, task-relevant knowledge can be acquired in 

two different ways - experience and description - and the degree of over-precision may vary as a function 

of this information format. However, no study has yet directly compared these formats in terms of over-

precision. Second, the size of the over-precision bias is moderated by the elicitation method. This 

suggests that it may be prudent to use multiple elicitation methods although there are good reasons to 

prefer methods that elicit the complete outcome distribution (see Haran et al., 2010, for a discussion). 

Third, it is theoretically useful to study over-precision in contexts where task-relevant knowledge is 

controlled so that knowledge differences can be ruled out, and predictions can be compared to optimal 

responses.  

Fourth, there are a number of different ways that over-precision can be operationalized. The most 

common is the group-level percentage of confidence intervals that end up including the realized outcome, 

which we call the hit rate. Confidence intervals can be called “over-precise” if the hit rate is less than the 

targeted confidence interval. Another indication of over-precision is the interval width. An interval can be 

called “over-precise” if it is narrower than is warranted relative to the true outcome distribution (i.e., more 

precise than the empirical or true distribution). Yet another indicator is the mean absolute difference 

between the estimated and true probability of each possible outcome, which we call calibration. The 

smaller the mean absolute difference the better calibrated. Finally, and perhaps most confusingly, the 

different ways that over-precision can be operationalized can conflict. For example, Moore, Carter, et al. 

(2015) observed that estimates were both over-precise (in terms of hit rate) but also under-precise (in 

terms of interval width). This is possible because the hit rate is evaluated relative to the obtained (or mean 

expected) outcome whereas interval width is evaluated relative to the true outcome distribution. We 

believe that interval width is not a good measure of prediction precision. This is because a person can 

perfectly match the variance and shape of the true outcome distribution – thus classifying as “precise” in 

terms of interval width – and yet be entirely wrong with all predictions because the distribution is 

misplaced (refer to Appendix A for further discussion). Although hit rate can also be problematic 

(because an interval of infinite width may achieve a perfect hit rate at the expense of any practical value), 
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it is the most common operationalization of precision and thus useful to connect with existing literature. 

Therefore, we decided to limit our analysis to (1) hit rate, which would coarsely define whether a group 

was over- precise, precise, or under-precise, and (2) calibration, which would define how closely the 

provided outcome distribution matched the true outcome distribution. 

The Description-Experience Gap 

In the context of risky choices, it has been argued that a continuum exists with regards to how 

uncertainty information is presented (Camilleri & Newell, 2013). At one end of the continuum is 

“experience-based” information in which individual outcomes are presented sequentially and their 

probabilities can only be inferred (e.g., Goldstein & Rothschild, 2014). At the other end of the continuum 

is “description-based” information in which outcomes and their probabilities are explicitly specified in a 

summary (e.g., Moore, Carter, et al., 2015). 

The major observation from this stream of research is that people tend to make choices as if giving 

less weight to rare outcomes that are experienced versus those that are described (Hertwig & Erev, 2009; 

Rakow & Newell, 2010). In a typical demonstration of this “description-experience gap”, participants are 

presented with a binary choice between a safe option, which pays one outcome with certainty (e.g., $3), 

and a risky option, which pays one of two outcomes with some probability (e.g., $4 with 80% chance, 

otherwise $0). Participants in the description version of the task are presented with a summary statement 

outlining the outcome distributions associated with each option and then asked to choose a preferred 

option. Participants in the experience version of the task must sequentially sample individual outcomes 

from each option, in any order and as often as desired, and are then asked to choose a preferred option. 

The choice tasks can be considered equivalent in that the sampled outcomes by those in the experience 

group are randomly selected from the same distributions that are stated to those in the description group. 

Hertwig et al. (2004) found that 36% of people in the description group preferred the risky option (i.e., 

80% $4) to the safe option (100% $3), whereas 88% of people in the experience group preferred the risky 

option to the safe option. More recent research suggests that this gap is robust across a range of different 

contexts and problems (Wulff, Canseco, & Hertwig, 2018). However, there are some contexts where there 
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is no gap (Glöckner, Hilbig, Henninger, & Fiedler, 2016), particularly situations in which a small sample 

of perfectly representative outcomes is observed (Camilleri & Newell, 2011).  

A number of theories have been put forward to explain the description-experience gap (see Hertwig, 

2012 for a review). According to one early account, the gap occurs because people systematically 

misrepresent options’ outcome distributions (Fox & Hadar, 2006). For example, people may overestimate 

the probability of rare events when learning from description but underestimate them when learning from 

experience. In order to assess this theory, several studies have asked participants to provide subjective 

estimates of experienced outcome probabilities. These studies typically present participants with a list of 

potential outcomes and then ask them to explicitly state the probability of each outcome occurring. For 

example, in one study, participants were asked to fill in the sentence, “__% of cards were worth 4 points” 

(Gottlieb, Weiss, & Chapman, 2007). In general, when using these methods, people produce estimates 

that are well calibrated (Fox & Hadar, 2006) or that overestimate (not underestimate) rarely experienced 

events (Barron & Yechiam, 2009; Camilleri & Newell, 2009; Hau, Pleskac, Kiefer, & Hertwig, 2008; 

Hertwig, Pachur, & Kurzenhauser, 2005; Ungemach, Chater, & Stewart, 2009). Thus, there is little 

support for the notion that the gap is driven by systematically misrepresented outcome distributions1. 

Despite the burgeoning literature, existing observations shed little light on how description- and 

experience-based knowledge might moderate prediction precision for three reasons. First, most previous 

studies asked participants to estimate the outcome distribution that had been observed in the past rather 

than the outcome distribution predicted in the future. Second, most previous studies elicited estimates 

only for experience-based information and not description-based information. Third, most previous 

studies have prevented participants from indicating a belief in future outcomes occurring that were not 

                                                         
1 It is worthwhile to clearly distinguish the terms “over-estimate” and “over-weight”: “Over-estimate” is a term that relates to 

belief in the probability that an outcome will occur. If an outcome has a 20% chance of occurring and yet a person believes that it 

has a 30% chance of occurring, then we would say this person has over-estimated the 20% outcome. “Over-weight” is a term that 

relates to how much impact an outcome has when making a choice. If a risk-neutral person prefers “$3 with 100% probability” 
over “$4 with 80% probability, else $0”, then we would say that this person has over-weighted the $0 outcome. There are many 

reasons a person might over-weight an outcome, and over-estimating its likelihood is just one of them.  
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part of the original objective outcome distribution. Therefore, in this literature, participants’ true predicted 

outcome distribution has remained unknown. 

Hypothesis Development 

It has been argued that the brain can be thought of as a hypothesis-testing, prediction-machine 

(Friston, 2005; Hohwy, 2013). Indeed, a primary function of memory is to predict the future (see Schacter 

et al., 2012 for a review). Format dependent-differences in prediction and, more specifically, the precision 

of those predictions could occur at two stages. First, there could be differences in how (the equivalent) 

information is encoded and represented in the mind. Second, there could be differences in how that 

information is used to generate predictions. In this paper, we argue that differences observed in prediction 

(i.e., the second stage) begin with differences at encoding (i.e., the first stage).  

According to several influential theories, learning occurs via prediction errors (Mackintosh, 1975; 

Pearce & Hall, 1980; Rescorla & Wagner, 1972). A prediction error refers to the discrepancy between 

what occurs and what was predicted to occur (Den Ouden, Kok, & De Lange, 2012). Experimental 

research has confirmed that prediction errors produce surprise, which is crucial for learning (Kamin, 

1969). Note that the experience format, where outcomes are presented sequentially, naturally allows for a 

surprise: The presentation of each outcome affords an opportunity to make an implicit prediction about 

the next outcome, experience a prediction error, and improve learning. Consistent with this idea, there is 

considerable evidence demonstrating that learning from experience leads to good appreciation for 

properties of the underlying distribution (Hasher & Zacks, 1979; Hasher & Zacks, 1984; Hogarth & 

Soyer, 2011; Kaufmann et al., 2013; Zacks & Hasher, 2002) though there are some environments where 

this is not the case (Hogarth, Lejarraga, & Soyer, 2015). Indeed, repeated performance feedback has been 

shown to improve prediction accuracy (Stone & Opel, 2000). It is, therefore, no surprise that many 

experience-based choice models incorporate a prediction-error component (see Erev et al., 2010). In 

contrast, the description format, which summarises the entire outcome distribution in a single statement, 

does not naturally allow for a surprise: There is no opportunity to make a prediction, experience a 

prediction error, and improve learning. Consistent with this idea, there is evidence that learning from 
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description can lead to poor appreciation for properties of the underlying distribution (Camilleri & 

Newell, 2009; Erev, Glozman, & Hertwig, 2008; Gottlieb et al., 2007; Hawkins, Hayes, Donkin, 

Pasqualino, & Newell, 2015; Hoffrage, Krauss, Martignon, & Gigerenzer, 2015; Hogarth & Soyer, 2011). 

Therefore, it seems reasonable to expect that people learn the properties of an outcome distribution better 

from experience than description.  

If predictions are based on the stored representation of the outcome distribution, then a relatively 

good underlying representation of the outcome distribution when learning from experience should 

produce a number of measurable downstream consequences for predictions. For example, we would 

expect better overall calibration and a hit rate in line with the confidence interval target. Additionally, we 

were interested in people’s prediction of extreme events. An extreme event is one that is distant from the 

mean. Extreme events also tend to be rare; that is, have historically low occurrence. We focus on extreme 

events because excessive belief in such events can have a large impact on behavior (Lichtenstein, Slovic, 

Fischhoff, & Combs, 1978). Consequently, much of the research in the risky choice, especially the 

description-experience gap literature, has focused on skewed distributions with rare, extreme events, 

which is where we begin our investigation, too. One consequence of the expected poor outcome 

distribution by those learning from description is more random predictions, which would manifest as a 

higher expectation of extreme events.  

Our conceptual development leads to the following formal hypotheses:  

H1: When asked to predict future outcomes: 

A: average confidence interval hit rate will be higher for those presented with 

information in experience (vs. description) format. 

B: average calibration will be better for those presented with information in experience 

(vs. description) format2.  

                                                         
2 Given that we did not disclose the causal mechanism underlying the outcome distribution, we proceeded under the assumption 

that it would be rational to predict a future outcome distribution that was equal to the past outcome distribution. In practice, we 
did not expect the average participant to simply predict exactly the presented outcomes. Rather, we expected participants to 

invent a plausible causal mechanism and then try to predict future outcomes based on the recalled information, the invented 
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C: fewer extreme events will be predicted by those presented with information in 

experience (vs. description) format. 

H2: When asked to recall past outcomes: 

A: average calibration will be better for those presented with information in experience 

(vs. description) format. 

Finally, a core assumption of our conceptualization is that predictions and choice rely on the same 

underlying knowledge representations. This assumption is consistent with many current theories of choice 

(Kiani & Shadlen, 2009; Merkle & Van Zandt, 2006; Moran, Teodorescu, & Usher, 2015; Pleskac & 

Busemeyer, 2010; Ratcliff & Starns, 2013; Van den Berg et al., 2016). Therefore, we were also interested 

to explore how well estimates of the underlying outcome distribution predicted choices.  

The Experiments 

To explore how the over-precision bias is moderated by the format in which information is 

presented, we conducted three experiments. In each experiment, we presented the participant with 

information regarding the performance of a consistent worker and an inconsistent worker with equal 

average outcomes over a 10-day period. We manipulated the format in which worker information was 

presented. Participants were asked to fire one worker and retain the other. Participants were then asked to 

make predictions about each worker’s future performance. In Experiment 1, which tested H1A, we 

presented participants with information in the description or experience format, and then asked for 

explicit confidence intervals. In Experiment 2, which tested H1ABC and H2, we introduced new 

problems, and elicited the entire outcome probability distribution with respect to what had been observed 

in the past or what was expected to be observed in the future. In Experiment 3, which tested H1ABC, we 

examined a broader range of choice problems using an incentive-compatible design. 

Our research makes a number of contributions to the literature. Substantively, we contribute by 

answering the question of how the over-precision bias is moderated by the way that information is 

                                                         
causal mechanism, and some kind of prediction mechanism (Gaissmaier & Schooler, 2008; West & Stanovich, 2003). We expand 

on this interpretation in the General Discussion. 
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learned. In short, we find that those who learn from description tend to be over-precise (i.e., the group 

confidence interval hit rate is less than the target) whereas those who learn from experience tend to be 

under-precise (i.e., the group confidence interval hit rate is more than the target). This is an important 

finding because, historically, over-precision has been very difficult to eliminate, let alone reverse (Moore, 

Tenney, et al., 2015). Additionally, we reveal that those presented with information in experience format 

tend to learn the underlying outcome distribution better than those presented with description. This non-

intuitive observation suggests that precision differences begin with what is learned rather than how that 

information is used. Finally, we show a close connection between the predicted (vs. recalled) outcome 

distributions and choice preference, suggesting that both judgments and choice derive from the same 

underlying representations of the alternative options.  

Methodologically, we contribute by designing a procedure that tightly controls the information that 

people have when making a prediction, thus overcoming a limitation of previous studies in which 

researchers were blind to each participant’s prediction-relevant knowledge. Additionally, we develop a 

method to collect probability outcome distributions that does not rely on understanding probabilities, 

which is a barrier for many participants. Finally, we allow participants to express belief in outcomes that 

they have never previously observed, thus capturing a truer representation of participant’s perceived 

outcome distribution than most previous research. 

Theoretically, we contribute by discussing a unique account for our observations: better learning for 

those presented with the experience format due to more opportunities for prediction error. This is a unique 

mechanism rarely discussed in the over-confidence and description-experience gap literature that is 

nevertheless fundamental to human learning. Additionally, we sketch out an exemplar-based model that 

could be used to make additional hypotheses about judgment and choice behavior when learning from 

description and experience. Finally, we contribute to the description-experience risky choice literature by 

providing a novel explanation for the description-experience gap: a higher expectation for previously 

unobserved outcomes, which often manifests as a higher belief in rare, extreme outcomes. 

Experiment 1 
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The purpose of Experiment 1 was to test H1A. To do this, we presented participants with information 

in the description format, experience format, or both. Consistent with the bulk of existing literature, we 

asked participants to explicitly generate a 90% confidence interval for the predicted future performance of 

each worker. We began our investigation with a single choice problem in which the inconsistent worker 

sometimes performed well below the mean (i.e., a rare, extreme, bad outcome). 

Methods 

Participants 

We aimed to collect data until there were more than 200 participants (i.e., on average 50 participants 

per group). This was an intuitive stopping rule. The final sample of participants were 202 Americans and 

Canadians (117 female, Mage = 33.4) recruited from Amazon’s Mechanical Turk in exchange for money. 

Final group sizes ranged between 49 and 51. 

Materials and Procedure 

Each participant was asked to take on the role of a front-line manager, compare the performance of 

two workers, and choose to keep only one. One worker had consistent (i.e., low variance) performance 

and the other worker had inconsistent (i.e., high variance) performance. The mean performance of each 

worker was the same. It was also stated that the maximum number of sales possible on any single day was 

20. Before proceeding to the choice phase, the participant was required to correctly answer 3 

comprehension questions associated with the instructions.  

During the choice phase, the participant was presented with information regarding 10 days of work 

for each worker before having to select one worker to keep. Information about both workers always 

appeared on the same screen together. That is, information about the two options was presented 

simultaneously. 

After choosing, participants indicated their level of confidence in their choice (“How confident are 

you that you have selected the best salesperson for the long-term?”) on a scale of 1 (“Not confident at 
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all”) to 10 (“Extremely confident”)3. Next, participants indicated 90% confidence intervals around each 

workers’ expected average future performance by specifying the lower and upper bounds (Appendix B). 

On the next page, we attempted to elicit an entire outcome distribution for each option4. Finally, 

demographic information was collected, and the participants were thanked and paid. 

Design 

The full design involved random allocation to one of four information groups; however, here we 

focus on only the two that have direct relevance to our hypotheses. For those in the experience group, 

worker performance was presented as individual outcomes one at a time, side-by-side for each worker 

(see Appendix C). Specifically, the low variance worker’s performance was 8, 8, 8, 8, 8, 9, 9, 9, 9, 9 (SD 

= 0.5) and the high variance worker’s performance was 1, 9, 9, 9, 9, 9, 9, 10, 10, 10 (SD = 2.7), which we 

will call Problem 1. Outcomes were presented in one of 10 pre-determined orders that systematically 

varied where the rare outcome appeared in the sequence. Note that the average number of sales was 8.5 

sales for both workers. For those in the description group, worker performance was described in a 

summary sentence, side-by-side for each worker (see Appendix D)5. There was also an option location 

variable that determined whether the low or high variance option was positioned on the left or right of the 

screen. The two prediction-related dependent variables were hit rate and choice. To calculate the hit rate, 

we coded whether (“1”) or not (“0”) the elicited 90% confidence interval included the true mean (i.e., the 

outcome “8.5”). Additionally, choice was coded in terms of whether the high variance option was selected 

(“1”) or not (“0”). 

Results 

                                                         
3 There was no difference in stated confidence between groups, F(4, 197) = 1.11, p = .35. We do not discuss this measure any 

further.  
4 For each option, we asked participants to adjust 21 bars indicating the probability of each potential outcome. We decided to 

leave out analysis of this question in light of feedback from participants that this tool was confusing to use. In particular, many 
participants struggled with the fixed sum nature of the tool. Another pilot study using only this 21 bars measure (i.e., no explicit 

confidence interval) was also conducted, which we also do not report on for the same reason. In Experiment 2, we designed a 

more intuitive question to elicit the entire outcome distribution.  
5 The additional groups comprised participants who were given both description- and experience-based information (either 
description then experience or vice versa). For ease of exposition and because these groups do not bear directly on the key 

hypotheses under test, we do not consider them in the main manuscript. However, full details can be found in Appendix E. 
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We analyzed the data using logistical regression with format as the independent variable. We also 

entered the counterbalancing variable, option location, as a covariate. For all experiments, we report all 

effects that passed the significance threshold (p < .05). To maintain clarity, in general, we report in 

footnotes any significant effects that are unrelated to the hypotheses. 

Hit Rate 

The hit rate of the 90% confidence intervals for each option is presented in Figure 1. Overall, the 

results support H1A. For the low variance option, the hit rate was significantly higher for those in the 

experience (vs. description) group, χ2(N = 100) = 6.42, p = .01. Follow-up analyses revealed that the hit 

rate for those in the experience group was not significantly different from 90%, χ2(N = 51) = 0.28, p = 

.60, whereas the hit rate for those in the description group was significantly less than 90%, χ2(N = 49) = 

10.76, p = .001.  

Similarly, for the high variance option, the hit rate was significantly higher for those in the 

experience (vs. description) group, χ2(N = 100) = 10.94, p = .0009. Follow-up analyses revealed that the 

hit rate for those in the experience group was not significantly different from 90%, χ2(N = 51) = 2.66, p = 

.10, whereas the hit rate for those in the description group was significantly less than 90%, χ2(N = 49) = 

10.76, p = .001.  

Choice 

The proportion of high variance choices was higher for those in the experience group (.65) than those 

in the description group (.35), χ2(N = 100) = 9.22, p = .002. 

To investigate the connection between choice and estimates, we computed a variable predicting 

whether the low or high variance option was expected to be selected based on the participant’s relative 

confidence intervals. Specifically, we subtracted the implied mid-point of the high variance confidence 

interval from the implied mid-point of the low variance confidence. Based on this exercise, 43 people 

(67% in the description group) were predicted to choose the low variance option, 36 people (33% in the 

description group,) were predicted to select the high variance option, and 21 people (38% in the 

description group) had no prediction (because of equal midpoints). The proportion of choices correctly 
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predicted for cases when a prediction was possible was 0.87, which is significantly higher than chance, 

χ2(N = 79) = 49.50, p < .0001. There was no difference in the proportion of choices correctly predicted 

between formats, χ2(N = 79) = 0.01, p = .92. 

Discussion 

The results of Experiment 1 provide initial support for our conceptualization. Based on observed hit 

rates, H1A was supported: those who learned from description were over-precise (i.e., interval hit rate 

lower than the 90% target) whereas those who learned from experience were precise (and, if anything, 

trended towards being under-precise with an interval hit rate higher than the 90% target).  

Although we made no explicit hypothesis regarding choice patterns, our observations replicated the 

classic description-experience choice gap: Those who learned from experience were more likely than 

those learning from description to choose the high variance option. This pattern is consistent with those 

learning from description overweighting and/or overestimating the likelihood of the rare event, which in 

this case was an extreme, “bad” outcome (i.e., much lower than the mean outcome). Interestingly, we 

found that choices could be predicted much better than chance when given the (inferred) average outcome 

from each option. This result reveals a tight connection between estimates and choice, though the exact 

nature of this relationship cannot be determined when relying on the very coarse hit rate variable. We 

explore this finding further in Experiment 2. 

Experiment 2 

The purpose of Experiment 2 was to test H1ABC and H2. To do this, we asked half of the 

participants to report on outcomes predicted in the future (as in Experiment 1) and asked the other half to 

report on outcomes observed in the past. We replaced the explicit interval question with a novel one that 

elicited the entire outcome distribution without mention of probabilities. This allowed us to test whether 

H1A was robust to different elicitation methods, and also permitted us to evaluate the calibration of the 

predicted outcome distribution relative to the true outcome distribution (i.e., mean absolute error). In 

Experiment 1, the description-based statement was probabilistic, which research shows can be difficult to 

understand (Gigerenzer & Hoffrage, 1995; Gottlieb et al., 2007). Therefore, in Experiment 2, we replaced 



18 
 

 

probabilistic information with frequency information. To improve generalizability, we designed two new 

choice problems: one in which the inconsistent worker sometimes performed well below the mean (i.e., a 

rare, extreme, bad outcome), and the other in which the inconsistent worker sometimes performed well 

above the mean (i.e., a rare, extreme, good outcome). 

Methods 

Participants 

We aimed to collect data until there were more than 600 participants (i.e., on average 75 participants 

per group). This was an intuitive stopping rule and larger than Experiment 1 given the more complex 

design. The final sample of participants were 604 Americans and Canadians (311 female, Mage = 32.3) 

recruited from Amazon’s Mechanical Turk in exchange for money. Final group sizes ranged between 71 

and 80.  

Materials and Procedure 

The procedure was identical to Experiment 1 with the following change: after the choice phase, 

instead of providing explicit confidence intervals, the participant was required to generate an outcome 

distribution for each worker by stating 10 outcomes for each worker. Note that this approach allowed 

participants to enter values larger than 20 even though it was stated in the instructions that this was not 

possible in the scenario.  

Design 

The participants were randomly allocated to one of eight groups according to a 2 (Problem: 1 vs. 2) x 

2 (Format: Description vs. experience) x 2 (Estimate type: Past vs. future estimation) between-subjects 

design.  

Problem was manipulated via the composition of the ten outcomes associated with the high variance 

option. For Problem 1, the high variance option outcomes were: 1, 1, 10, 10, 11, 11, 11, 11, 12, 12 (SD = 

4.3). Problem 1, therefore, featured a bad extreme outcome that was also rare (i.e. 1). For Problem 2, the 

high variance option outcomes were: 6, 6, 6, 6, 7, 7, 8, 8, 18, 18 (SD = 6.8). Problem 2, therefore, featured 

a good extreme outcome that was also rare (i.e., 18). For both problems, the low variance option 
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outcomes were: 8, 8, 8, 9, 9, 9, 9, 10, 10, 10 (SD = 0.8). Note that the average number of sales was 9.0 for 

all problems and all options. 

For those allocated to the description information format, worker performance was described in a 

summary sentence, side-by-side for each worker (see Appendix F). Unlike Experiment 1, the sentence did 

not make reference to any probabilities. For those allocated to the experience information format, worker 

performance was presented as individual outcomes one at a time, side-by-side for each worker (see 

Appendix C). Outcomes were presented in one of 10 pre-determined orders that systematically varied 

where the extreme outcomes appeared in the sequence. 

For those allocated to the past estimate type, the outcome distribution question stated: “Think back: 

please recall as best you can how many sales [the name of the worker] achieved each particular day”. 

For those allocated to the future estimate type, the outcome distribution question stated: “Think forward: 

please estimate as best you can how many sales [the name of the worker] will achieve each particular 

day” (See Appendix G).  

To calculate the implied 80% confidence intervals, we ordered the provided 10 outcomes from 

smallest to largest, and then eliminated the first and last outcomes. To calculate the hit rate, we coded 

whether (“1”) or not (“0”) this implied interval included the true mean (i.e., the outcome “9”).  To 

evaluate the calibration of the provided outcome distributions, we examined the mean absolute error 

between the estimated likelihood of each outcome and the true likelihood of each outcome after arranging 

both in order from lowest to highest. For each option we also computed a variable capturing the average 

proportion of “extreme outcomes” in the estimated outcome distribution of the two options. Extreme 

outcomes were operationalized as less than “3” or more than “17”. These values were chosen somewhat 

arbitrarily but are robust to a sensitivity analysis (see footnote 6).  

Results 

We analyzed the data using ANOVA and logistical regression with format, problem, estimate type, 

and their interactions all entered as independent variables. We also entered the counterbalancing variable, 

option location, as a covariate.  
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Hit Rate 

The hit rate of the implied 80% confidence interval for each option is presented in Figure 2. As in 

Experiment 1, H1A was supported. When making a prediction about the future for the low variance 

option, the hit rate was significantly higher for those in the experience (vs. description) group, χ2(N = 

304) = 11.03, p = .0009. Follow-up analyses revealed that the hit rate for those in the experience group 

was significantly higher than 80%, χ2(N = 157) = 14.49, p = .0001, whereas the hit rate for those in the 

description group was not significantly different from 80%, χ2(N = 147) = 0.28, p = .60. 

Similarly, when making a prediction about the future for the high variance option, the hit rate was 

significantly higher for those in the experience (vs. description) group, χ2(N = 304) = 11.42, p = .0007. 

Follow-up analyses revealed that the hit rate for those in the experience group was significantly higher 

than 80%, χ2(N = 157) = 4.74, p = .03, and the hit rate for those in the description group was significantly 

lower than 80%, χ2(N = 147) = 6.16, p = .01. 

Calibration 

The average estimated likelihood of each outcome is presented in Figure 3. The observations support 

H2. When recalling past outcomes for the low variance option, calibration was significantly better for 

those in the experience (vs. description) group, F(1, 295) = 18.24, p < .0001. Similarly, when recalling 

past outcomes for the high variance option, calibration was significantly better for those in the experience 

(vs. description) group, F(1, 295) = 24.94, p < .001. 

The observations also support H1B. When making predictions about the future for the low variance 

option, calibration was significantly better for those in the experience (vs. description) group, F(1, 299) = 

17.59, p < .0001. Similarly, when making predictions about the future for the high variance option, 

calibration was significantly better for those in the experience (vs. description) group, F(1, 299) = 20.39, 

p < .0001. 

The observations also support H1C. When making predictions about the future for the low variance 

option, the proportion of extreme outcomes was significantly lower for those in the experience (vs. 

description) group, F(1, 299) = 19.18, p < .0001. When making predictions about the future for the high 
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variance option, the proportion of extreme outcomes was significantly lower for those in the experience 

(vs. description) group, F(1, 299) = 14.51, p = .00026. 

Choice 

The proportion of choices made in each group is presented in Figure 4. Estimate type was ignored 

because at the point of choice this factor was not yet implemented. Significantly more high variance 

choices were made by those in the description (vs. experience) group χ2(N = 604) = 9.78, p = .002. 

However, this effect was qualified by a significant interaction, χ2(N = 604) = 10.04, p = .002, indicating 

that the difference was driven by Problem 2 in which the extreme outcome was good7. 

To investigate the connection between choice and estimates, we computed a variable predicting 

whether the low or high variance option was expected to be selected based on the participant’s relative 

outcome distributions. Specifically, we subtracted the implied mean of the high variance outcome 

distribution from the implied mean of the low variance outcome distribution. Based on this exercise, 275 

people (47% in the description group) were predicted to choose the low variance option, 244 people (42% 

in the description group,) were predicted to select the high variance option, and 85 people (71% in the 

description group) had no prediction (because of equal means). The proportion of choices correctly 

predicted for cases when a prediction was possible is shown in Figure 5. Prediction success was 

significantly higher when based on future (vs. past) estimates, χ2(N = 519) = 23.54, p < .0001, and there 

was no effect of format, χ2(N = 519) = 0.42, p = .51)8.  

Discussion 

                                                         
6 There was also a significant effect of problem type, F(1, 299) = 6.62, p = .01, reflecting that the proportion of extreme 

outcomes was significantly lower for Problem 2 (vs. 1). Results when extreme outcomes was operationalised as less than “2” or 

more than “18”: For the low variance option, description (M = 0.8) was significantly higher than experience (M = 0.01), F(1, 

299) = 13.79, p = .0003. For the high variance option, description (M = 0.12) was significantly higher than experience (M = 

0.08), F(1, 299) = 7.31, p = .007. Results when extreme outcomes operationalised as less than “4” or more than “16”: For the low 
variance option: description (M = 0.13) significantly higher than experience (M = 0.03), F(1, 299) = 19.75, p < .0001. For the 

high variance option, description (M = 0.25) was significantly higher than experience (M = 0.16), F(1, 299) = 18.84, p < .0001. 
7 There was also a significant effect of option location, χ2(N = 604) = 4.04, p = .04, reflecting that more high variance choices 

were made when that option was positioned on the right hand side of the screen.  
8 The analysis also revealed a significant effect for problem type, χ2(N = 519) = 11.27, p = .0008, reflecting better calibration for 

problem 1 (vs. 2). 
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The results of Experiment 2 reinforce and extend those of Experiment 1. Supporting H1A, we 

observed that the average confidence interval hit rate was higher for those presented with information in 

experience (vs. description) format. Whereas those learning from experience tended to be under-precise 

(i.e., 80% intervals contained the mean expected outcome more than 80% of the time), those learning 

from description tended to be over-precise for the high variance option (i.e., 80% intervals contained the 

mean expected outcome less than 80% of the time) or precise for the low variance option (i.e., 80% 

intervals contained the mean expected outcome approximately 80% of the time). In this experiment, we 

were able to more clearly understand the source of this discrepancy by eliciting the entire outcome 

distribution for past and predicted outcomes. Supporting H1B, the outcome distribution of those who had 

learned from description were poorly calibrated compared to those who had learned from experience. In 

particular, those who learned from description were more likely to expect extreme outcomes. This 

observation suggests better encoding of information by those who learned from experience. Better recall 

of the presented outcome distribution translated into better future predictions.  

We found a description-experience choice gap in one out of the two problems examined in 

Experiment 2. A clue to the occurrence of the gap in one problem but not the other can be found in future 

estimates summarised in Figure 3 Panel A. As can be seen, there is little difference between description- 

and experience-based predictions for outcomes 8, 9, and 10, in Problem 1 but a large difference for 

Problem 2. Therefore, the gap in Problem 2 may be driven by those in the description group 

overestimating the number of (low outcome) extreme events associated with the low variance option. 

A final noteworthy result is that we were able to correctly predict over 86% of choices by simply 

comparing the means of the option’s estimated future outcome distributions. This finding lends support to 

the idea that estimates and choice are based on the same underlying representations. It is also important to 

note that choice prediction was significantly worse – closer to 67% – when based on comparing the 

means of the option’s recalled outcome distributions. This finding lends support to the idea that people 

use or transform their stored representation of the outcome distribution when making a prediction. 

Finally, as in Experiment 1, we found no effect of format on the proportion of choices correctly predicted. 
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This result suggests that, despite format-dependent differences in what was learned, those underlying 

representations are used in the same way to guide a choice. We return to these ideas in the General 

Discussion. 

Experiment 3 

The purpose of Experiment 3 was to again test the first three hypotheses while addressing some 

limitations associated with the first two experiments. First, the earlier experiments relied on a sample 

recruited from Amazon’s Mechanical Turk. Second, the earlier experiments did not incentivize 

participants based on their probability estimates and choices. This design might threaten the validity of 

our conclusions if one information format was inherently more interesting. Such a concern would be 

eliminated if our earlier observations replicated in a context where both probability estimates and choices 

were incentivized. Third, the earlier experiments used choice problems in which the high variance option 

was associated with a skewed distribution where the rare outcome was also the extreme outcome and 

located well above or below the mean. These choice problems might threaten the validity of our 

conclusions because the opportunity to overestimate (vs. underestimate) extreme outcomes was not equal. 

For example, if those presented with description-based information naturally have a greater tendency to 

overestimate rare outcomes, then this group would always produce less well calibrated distributions when 

rare outcomes are also extreme outcomes. Such a concern would be eliminated if our earlier observations 

replicated in problems that had a symmetrical distribution that separated the rare and extreme outcomes, 

particularly if the rare outcome was also the mean outcome.  

To address these concerns, Experiment 3 relied on a different sample group, was incentive-

compatible, and used new choice problems. One of the most important new choice problems was 

structured as follows: 3 with a 40% chance, 9 with a 20% chance, and 17 with a 40% chance. Note that in 

this problem, the mean outcome is 9, the rare outcome is also 9, and the extreme outcomes are 3 and 17. 

Therefore, if those learning from description simply over-estimated the rare outcome, they would also be 

over-estimating the mean outcome, which should result in higher hit rate. In contrast to this possibility, 

we again predicted that those learning from experience would learn the underlying outcome distribution 
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better, which would be reflected in better calibration (i.e., H1B) and higher hit rates (i.e., H1A). 

Importantly, we were expecting these predictions to hold across all four different problems, thus 

predicting no interaction between format and problem. 

The prediction for H1C – fewer extreme events predicted by those presented with information in 

experience (vs. description) format – is more nuanced. This prediction is based on the expectation of more 

random predictions by those in the description group, due to poor learning of the true outcome 

distribution. This prediction makes sense when the true outcome distribution is normally distributed or 

skewed because (random) predictions of extreme outcomes likely reduce calibration. However, when the 

true outcome distribution is symmetrical and contains many extreme outcomes, such as the problem 

outlined above, then random predictions of extreme outcomes may (inadvertently) improve calibration. 

Therefore, we expected an interaction between format and problem for the high variance option. 

Methods 

Participants 

We aimed to collect data until there were more than 200 participants, which was chosen to obtain at 

least 90% power to detect a small-to-medium effect size. The final sample of participants were 232 

Australians (174 female, Mage = 20.6) recruited from a public university undergraduate student pool in 

exchange for course credit. Participants also had the opportunity to earn cash contingent on outcome 

distribution judgments and choices made during the experiment, as well as a lottery conducted after the 

experiment. Final group sizes ranged between 114 and 118. 

Materials and Procedure 

The procedure was identical to Experiment 2 with the following changes: First, participants made 

four (rather than one) evaluations between pairs of workers. Each choice was described as corresponding 

to a different part of the country: north-east, south-east, north-west, and south-west. Second, we made the 

experiment incentive compatible by paying 1 out of 20 participants based on their choices and on the 

calibration of judgments about the outcome distribution (see Appendix H for instructions). The choice 

payment was operationalized as the average 10-day future performance of one randomly selected worker 
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the participant had chosen to keep. The calibration payment was operationalized as the summed absolute 

distance between the forecasted and past percentage of sales for the same worker. Third, the estimated 

sales values for each day were restricted to be between 0 and 20, which was consistent with the 

instructions stating that 20 was the maximum number of sales per day per worker. Fourth, participants 

made predictions only about the worker’s future performance.  

Design 

The participants were randomly allocated to one of eight groups according to a 4 (Problem: 1 vs. 2 

vs. 3 vs. 4) x 2 (Format: Description vs. Experience) mixed-subjects design. Problem was manipulated 

within subject and format was manipulated between-subjects. In addition, there were two counterbalance 

variables: problem order and option location. The problem order variable determined the order in which 

the four problems were presented according to a Latin square. The option location variable determined 

whether the low or high variance option was positioned on the left or right of the screen.   

Problem was manipulated via the composition of the ten outcomes associated with the high variance 

option. For Problem 1, the high variance option outcomes were: 1, 1, 11, 11, 11, 11, 11, 11, 11, 11 (SD = 

4.2). Problem 1, therefore, featured a bad extreme outcome (i.e., 1) that was also rare. For Problem 2, the 

high variance option outcomes were: 7, 7, 7, 7, 7, 7, 7, 7, 17, 17 (SD = 4.2). Problem 2, therefore, featured 

a good extreme outcome (i.e., 17) that was also rare. For Problem 3, the high variance option outcomes 

were: 1, 1, 1, 1, 9, 9, 17, 17, 17, 17 (SD = 7.5). Problem 3, therefore, featured both bad and good extreme 

outcomes that were not rare. For Problem 4, the high variance option outcomes were: 1, 1, 9, 9, 9, 9, 9, 9, 

17, 17 (SD = 5.3). Problem 4, therefore, featured both bad and good extreme outcomes that were also both 

rare. For all four problems, the low variance option outcomes were 8, 8, 8, 9, 9, 9, 9, 10, 10, 10 (SD = 

0.8). Note that the average number of sales was 9.0 for all problems and all options. Format was 

manipulated in the same way as in Experiment 2. 

Results 

Our analysis relied on a series of linear mixed-effects models (LMM) and generalized linear mixed-

effects models (GLMM). We preferred the mixed-effects model because it flexibly enables the modeling 
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of correlated data—inherent to the nature of our design—without the violation of important regression 

assumptions (Demidenko, 2004). In all models, the participant ID was entered as a random effect. We 

entered format (coded 0 = description, 1 = experience), problem (coded 1, 2, 3, or 4), and their interaction 

as independent variables. We also entered the two counterbalancing variables – problem order and option 

location – as covariates.  

Hit Rate 

The hit rate of the implied 80% confidence interval for each option is presented in Figure 6. To 

analyze this variable, we entered hit rate (coded 0 = Fail, 1 = Success) as the dependent variable in the 

binary logistical regression GLMM. Overall, the results again support H1A. For the low variance option, 

the hit rate was significantly higher for those in the experience (vs. description) group, F(1, 916) = 19.77, 

p < .001, and there was no interaction between format and problem, F(1, 916) = 0.68, p = .57. Follow-up 

analyses revealed that the hit rate for those in the experience group was significantly higher than 80%, 

χ2(N = 472) = 73.07, p < .0001, whereas the hit rate for those in the description group was not 

significantly different from 80%, χ2(N = 456) = 0.82, p = .37. 

For the high variance option, the hit rate was also significantly higher for those in the experience (vs. 

description) group, F(1, 916) = 8.58, p = .003, and there was no interaction between format and problem, 

F(1, 916) = 2.43, p = .069. Follow-up analyses revealed that the hit rate for those in the experience group 

was significantly higher than 80%, χ2(N = 472) = 41.87, p < .0001, whereas the hit rate for those in the 

description group was not significantly different from 80%, χ2(N = 456) = 1.78, p = .18. 

Calibration 

The average estimated likelihood of each outcome is presented in Figure 7. To analyze this variable, 

we entered calibration as the dependent variable in the LMMs. Overall, the results support H1B. For the 

low variance option, calibration was significantly higher for those in the experience (vs. description) 

                                                         
9 In addition, this analysis revealed a significant effect for problem, F(1, 916) = 6.70, p < .001, and option location, F(1, 916) = 

4.00, p = .046. That is, for the high variance option, the hit rate was relatively higher for problems 3 and 4 (vs. problems 1 and 2), 

and when that option was located on the right of screen.   
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group, F(1, 232) = 27.12, p < .001, and there was no interaction between format and problem, F(3, 696) = 

2.34, p = .0710. For the high variance option, calibration was significantly higher for those in the 

experience (vs. description) group, F(1, 232) = 26.78, p < .001, and there was no interaction between 

format and problem, F(3, 696) = 0.97, p = .4111.  

The observations also support H1C. When making predictions about the future for the low variance 

option, the proportion of extreme outcomes was significantly lower for those in the experience (vs. 

description) group, F(1, 232) = 10.72, p = .001. When making predictions about the future for the high 

variance option, the proportion of extreme outcomes was significantly influenced by format, F(1, 232) = 

4.58, p = .03, problem, F(1, 696) = 94.50, p < .001, and their interaction, F(1, 696) = 8.82, p < .001. As 

expected, the proportion of extreme outcomes was significantly lower for those in the experience (vs. 

description) group for Problems 1 and 2 (associated with a skewed distribution) but were no different for 

Problems 3 and 4 (associated with a symmetrical distribution with extreme outcomes).  

Choice 

The average proportion of high variance choices made in each group is presented in Figure 8. To 

analyze this variable, we entered choice (coded 0 = Low variance option, 1 = High variance option) as the 

dependent variable in the binary logistical regression GLMM. The analysis revealed no effect of format, 

F(1, 916) = 0.29, p = .59, nor was there an interaction between format and problem, F(1, 916) = 1.95, p = 

.12. 

To investigate the connection between choice and estimates, we computed a variable predicting 

whether the low or high variance option was expected to be selected based on the participant’s relative 

outcome distributions. Based on this exercise, 394 people (47% in the description group) were predicted 

to choose the low variance option, 331 people (48% in the description group) were predicted to select the 

high variance option, and 203 people (55% in the description group) had no prediction. The proportion of 

                                                         
10 In addition, this analysis revealed a significant effect for option location, F(1, 232) = 7.01, p = .009. That is, for the low 

variance option, calibration was significantly better when the low variance option was located on the right of screen. 
11 In addition, this analysis revealed a significant effect for problem, F(3, 696) = 7.45, p < .001. That is, for the high variance 

option, calibration was significantly better for problem 3 (vs. problems 1, 2, and 4). 
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choices correctly predicted for cases when a prediction was possible was 0.70, which is significantly 

higher than chance, χ2(N = 725) = 375.97, p < .0001. A final binary logistical regression GLMM analysis 

with proportion of choices correctly predicted as the dependent variable revealed no significant effects 

(all p’s > .05) suggesting that the model predictions were equally good for all formats and problems. 

Discussion 

The results of Experiment 3 reinforce those of Experiments 1 and 2. Supporting H1A, we observed 

that the average confidence interval hit rate was higher for those presented with information in experience 

(vs. description) format. Whereas those learning from experience tended to be under-precise (i.e., 80% 

intervals contained the mean expected outcome more than 80% of the time), those learning from 

description tended to be precise (i.e., 80% intervals contained the mean expected outcome approximately 

80% of the time). We note that the hit rate of those in the description group varied considerably across 

experiments and options. Inspection of the hit rates suggests that the type of distribution matters: the hit 

rate tended to be higher when the outcome distribution was symmetrical (for example, in Figure 6 Panel 

B, compare the non-symetrical Problems 1 and 2 with the symetrical Problems 3 and 4). This is because 

random predictions are more likely to decrease the hit rate in contexts with a skewed true outcome 

distribution. A clear implication is that skewed distributions are more diagnostic problems for evaluating 

prediction precision. 

In support of H1B, the outcome distribution of those who had learned from experience was better 

calibrated than those who had learned from description. This suggests better encoding of information by 

those who learned from experience. Interestingly, calibration for the low variance option, which had the 

same distribution in Experiments 2 and 3, was better in Experiment 3 (M = 1.34, SD = 1.87) than 

Experiment 2 (M = 1.67, SD = 2.51), t(1230) = 2.44, p = .01. This difference is likely attributable to the 

effects of incentives, the different sample group, or both. 

One question raised by these findings relates to how those learning from experience (vs. description) 

could be better calibrated and yet less precise. We believe this result again highlights how different 

operationalizations of precision provide different perspectives on exactly who is overconfident (see also 
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Appendix A). In these experiments, hit rate were scored relative to the expected mean outcome of the 

presented outcome distribution; in essence, all intervals were compared to a one-show draw and that draw 

was always the mean outcome. For example, for the high variance option of Problem 3, this was an 

outcome of 9. As a result, good calibration was associated with a very high hit rate for those learning 

from experience. An alternative way to score hit rates is relative to a random draw from the outcome 

distribution. For example, for the high variance option of Problem 3, 20% of the time this outcome would 

be 1, 20% of the time this outcome would be 17, and 60% of the time this outcome would be 9. We note 

that this second scoring rule would reduce overall hit rates and more closely align calibration and 

precision measures. 

General Discussion 

According to Moore, Tenney, et al. (2015), the form of overconfidence focused on in this paper –

over-precision – is interesting because it is the “… most robust form of overconfidence … [with] few, if 

any, documented reversals”. Much research has found that the truth is often surprisingly different from 

people’s expectations (Alpert & Raiffa, 1982; Soll & Klayman, 2004; Yaniv & Foster, 1995). The current 

set of experiments is therefore particularly compelling because it documents one of the few examples of 

under-precision – situations in which the truth is quite similar to people’s expectations. 

In our studies, the degree of precision was measured in terms of hit rate: how often a confidence 

interval included the true expected mean relative to the assigned confidence level. Our key manipulation 

was, prior to judgment, to provide information about the underlying outcome distribution in one of two 

forms: as individual outcomes observed sequentially (i.e., by experience), or as a summary statement 

describing the distribution of outcomes (i.e., by description). The information provided was objectively 

equivalent yet the format clearly influenced precision levels: Those learning from experience tended to be 

under-precise whereas those learning from description tended to be over-precise or, sometimes, precise12.  

                                                         
12 It is worth highlighting that the overall hit rate in the current set of experiments is much higher than in prior research using 

traditional paradigms, where the hit rates rarely climb above 60% for 90% confidence intervals. One likely explanation for this is 

that all information relevant for making a prediction in our experiments was provided during the study itself, thereby reducing the 
impact of memory. A second factor is our unique elicitation method, which asked for 10-day forecasts, thus eliciting an outcome 

distribution without requiring the participant to explicitly communicate probabilities.  
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An individual who makes predictions that too often miss the mark may be constructing a confidence 

interval that is too narrow or constructing a confidence interval that is poorly calibrated with reality (or 

both). Our data suggest that the latter image is often the more fitting for those learning from description. 

Observations made in Experiment 2 revealed that recalled outcome distributions were much better 

calibrated when participants were presented with experience- compared to description-based information. 

These observations are consistent with findings demonstrating that individuals are good at retaining 

information acquired from the sequential presentation of outcomes (Goldstein & Rothschild, 2014; 

Hogarth & Soyer, 2011; Kaufmann et al., 2013; Peterson & Beach, 1967; Zacks & Hasher, 2002). In 

contrast, those presented with description-based information tended to estimate outcome distributions 

with a higher degree of noise, which was often reflected as over-predicting the likelihood of extreme 

outcomes. Therefore, our results suggest that at least part of the reason that those learning from 

description were over-precise was that their recollection of the initial task-relevant information was 

relatively poor. 

Much past research has found a format-dependent difference in risky choice contexts consistent with 

the idea that rare outcomes are more overweighted in the description than experience format (see Wulff et 

al., 2018 for a review). We observed such a “choice gap” in Experiment 1 and also in Experiment 2 for 

one problem. However, we did not observe a gap for any of the four problems in Experiment 3. These 

observations are not unprecedented in light of studies finding small, zero, and sometimes even reversed 

choice gaps, particularly when people are presented with small representative samples such as in our 

experiments (Camilleri & Newell, 2011; Fox & Hadar, 2006; Glöckner et al., 2016).  

How do these observations help us to understand past findings of overconfidence? First, let us reflect 

on the kind of questions participants have been presented with in previous studies. Typically, they have 

been general knowledge, trivia-type questions in domains ranging from science to history to sports. For 

example, Soll and Klayman (2004) asked participants to construct confidence intervals around the invoice 

price of a sedan, the winning percentage of a basketball team, colleges’ overall quality score, average 

movie box office results, human fertility rates of different countries, the year in which a variety of devices 
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and processes were invented or discovered, and the average daily high July temperature of major cities 

around the world. For most of these questions, it is clear that knowledge was attained primarily from 

description. Take the question of estimating the high temperature in Sydney on the first day of next 

summer. Apart from those lucky enough to live in Sydney, all relevant knowledge must come from 

description (e.g., looking up the weather on a website; seeing the sunshine in a postcard photograph). Our 

contention is that description-based information is encoded in a fundamentally different way than 

experience-based information (Camilleri & Newell, 2013).  

We propose that when learning from experience, each observed outcome is explicitly stored into 

memory to serve as the basis of a representation. This assumption is consistent with recent exemplar 

theories of choice (Ashby & Rakow, 2014; Gonzalez & Dutt, 2011; Hawkins, Camilleri, Heathcote, 

Newell, & Brown, 2014; Lejarraga, Dutt, & Gonzalez, 2012) and also many other areas of cognition 

including theories of categorization (Nosofsky, Palmeri, & McKinley, 1994). Correspondingly, we 

propose that when learning from description, people use the description to mentally simulate a set of 

sample outcomes that are explicitly stored into memory to serve as the basis of a representation. This 

assumption is also consistent with recent choice models attempting to capture the behavior of both 

description- and experience-based choices within a single framework (Erev, Ert, Plonsky, Cohen, & 

Cohen, 2017; Erev et al., 2008; Lin, Donkin, & Newell, 2015).  

We propose that outcomes are imperfectly stored into memory (Hawkins et al., 2014; Lin et al., 

2015). According to our conceptualization, when learning from experience, the person automatically 

makes an implicit prediction regarding the future outcome (Friston, 2005; Hohwy, 2013). This prediction 

could be a random sample from the existing representation. Realized outcomes that produce a prediction-

error will be more accurately stored (Kamin, 1969; Mackintosh, 1975; Pearce & Hall, 1980; Rescorla & 

Wagner, 1972). Note that the experience format, where outcomes are presented sequentially, naturally 

allows for prediction error whereas the description format does not. According to our theory, this is the 

main source of format-dependent differences in judgment and decisions.  
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We speculate that recollection of the past outcome distribution is produced by a process of randomly 

sampling from the (imperfectly represented) outcome distribution (Juslin et al., 2007). Similarly, we 

speculate that generating an expected future outcome distribution is produced by a process of randomly 

sampling from a smoothed version of the (imperfectly represented) outcome distribution. This smoothing 

process conservatively redistributes the outcome distribution to account for idiosyncrasies in the observed 

data by making it less “lumpy”. For example, a worker may have produced 18 widgets twice last week, 

which is well above his average of 9. The smoothing process recognizes that these outliers could have 

very easily been 17 and 18 widgets and so this outcome in the future should not be very surprising. 

Naturally, this smoothing process is informed by any knowledge of the underlying mechanism producing 

the outcomes. Support for this idea can be seen in Figure 3 by noting the differences between recalled and 

predicted outcome distributions. For example, in Panel B, regardless of format, participants indicated that 

the probability of the extreme 18 outcome was less likely in the future than it was in the past. Importantly, 

in Experiment 2, choices were better predicted by future outcome predictions rather than the recollection 

of the presented outcome distribution. 

Finally, we propose that choice is determined by the selection of the option with the highest expected 

value, which is derived directly from the smoothed version of the (imperfectly represented) outcome 

distribution for each option. Support comes from the finding that when this choice rule made a prediction 

it was very often correct: 87% in Experiment 1, 87% in Experiment 2, and 70% in Experiment 3. This 

connection between choice and predicted outcomes supports our assumption – one that is consistent with 

several other recent models – that both estimates and choices emerge from the same underlying 

representations (Kiani & Shadlen, 2009; Merkle & Van Zandt, 2006; Moran et al., 2015; Pleskac & 

Busemeyer, 2010; Ratcliff & Starns, 2013; Van den Berg et al., 2016). Moreover, choices were equally 

well predicted in all of our experiments irrespective of the initial learning format. This suggests that 

format-dependent differences in choice stem from the representation of the information rather than how 

that representation is applied.  
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Under this account, the description-experience choice gap emerges because those learning from 

description have a relatively poorer representation of the future outcome distribution. In particular, they 

have a much stronger belief in rare, extreme outcomes occurring in the future, at least in contexts with 

normal or skewed outcome distributions. For example, in Experiment 2, those learning from description 

predicted extreme events 22% of the time whereas those learning from experience predicted extreme 

events 14% of the time. A higher anticipation of a rare event changes the expected value calculation. 

This sketched account could be investigated further by examining elements of the decision and 

memory processes thought to be involved. In particular, encouragement to consider more or varied 

samples (Hayes, Hawkins, & Newell, 2016; Koriat, Lichtenstein, & Fischhoff, 1980; Walters, Fernbach, 

Fox, & Sloman, 2016), and individual differences in working memory capacity (Dougherty & Hunter, 

2003a, 2003b; Kareev, 1995; Rakow, Demes, & Newell, 2008). Future research is also encouraged to test 

contexts that are different from the hiring manager scenario used in these experiments.   

Practical Implications 

The primary implication of this research is that people are better able to learn about an outcome 

distribution when information about it is presented in an experience format compared to a description 

format. Better calibration allows those who have learned from experience to make relatively more 

predictions about the future that “hit” the mark. In situations where the underlying outcome distribution is 

normal or skewed, which we would argue is most situations, then those learning from experience are also 

less likely to overestimate the possibility of extreme outcomes. 

An obvious lesson for those making predictions is to try, wherever possible, to learn from 

experience-based information. For example, there have been several demonstrations of the benefits of 

sample simulators (Hawkins et al., 2015; Hogarth & Soyer, 2011; Kaufmann et al., 2013). However, care 

must be taken because some contexts may be less amenable to applying experience than others, such as 

when the elements of the initial experience represent only a subset of the elements to be predicted 

(Hogarth & Soyer, 2016). Another potentially fruitful approach is to encourage joint decisions between an 

individual who has learned from description and another person who has learned from experience. Initial 
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evidence suggests that such a “wisdom of the crowd” approach may be helpful in attenuating individual 

biases (Lejarraga & Müller-Trede, 2016). 

Previous research has highlighted the distinction between choosing the best overall option and 

exceeding a stretch performance target (Kutzner, Read, Stewart, & Brown, 2016). A stretch performance 

target refers to obtaining an outcome well above average. When seeking to meet a stretch target the 

variance of performance, in addition to the mean performance, becomes important. For example, to 

achieve a stretch target the best option may be one with high variance, even if on most occasions that 

option produces fewer returns than a low variance option. An implication of our work is that estimated 

variance is moderated by how information is acquired. Therefore, managers pursuing a stretch target may 

be more likely to prefer candidates learned about from description than comparable candidates learned 

about by experience because of differences in predicted future performance variance. 

Managers are often the recipients of advice that must be integrated to make a decision. Previous 

research suggests that advisers who learn from description (vs. experience) provide their advice relatively 

more confidently, and this advice is often more preferred by decision-makers (Benjamin & Budescu, 

2015). In this study, decision-makers were not told the format by which advisers learned their 

information. An implication of the current research is that managers’ decisions could be improved if they 

are trained to ask their advisers how advice-related information was learned and discount the advice from 

advisors who have learned from description.  

Conclusions 

Our observations suggest that learning from experience – that is, from sequentially observed 

outcomes – leads to relatively better encoding and inferences about the properties of the outcome 

distributions underlying alternative options. This superiority produces relatively better calibrated 

predictions compared to when learning from description – that is, from a stated summary of the outcome 

distributions. Most people’s behavior is consistent with a choice rule that simply selects the option with 

the highest predicted expected value. Given that learning from experience tends to produce a lower 
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expectation of extreme events, those learning from experience sometimes prefer options with better 

outcomes most of the time. 
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Figures 

Figure 1 

A. 

  

B. 

  

Figure 1. Average proportion of 90% confidence intervals that contain the true mean as a function of format in 

Experiment 1. A: Low variance option. B: High variance option. The outcome distribution for the low variance 

option was 8(.5), 9(.5). The outcome disitrbution for the high variance option was 1(.1), 9(.6), 10(.3). The thick 

horizontal line represents a 90% hit rate.  
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Figure 2 

A. 

  

B. 

  

Figure 2. Average proportion of 80% confidence intervals that contain the true mean as a function of format, 

problem, and estimate type in Experiment 2. A: Low variance option. B: High variance option. The outcome 

distribution for the low variance option was 8(.3), 9(.4), 10(.3) for all problems. The outcome disitrbution for the 

high variance option was 1(.2), 10(.2), 11(.4), 12(.2) for Problem 1, and 6(.4), 7(.2), 8(.2), 18(.2) for Problem 2. The 

dark horizontal line represents 80% hit rate. 
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Figure 3 

A. 

  

B. 

  

Figure 3. Average estimated likelihood of each outcome as a function of format, problem, and estimate type in 

Experiment 2. A: Low variance option. B: High variance option. The outcome distribution for the low variance 

option was 8(.3), 9(.4), 10(.3) for all problems. The outcome disitrbution for the high variance option was 1(.2), 

10(.2), 11(.4), 12(.2) for Problem 1, and 6(.4), 7(.2), 8(.2), 18(.2) for Problem 2. Note: values above 20 were 

rounded down to 20 in this figure. 
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Figure 4 

  

Figure 4. Proportion of high variance choices as a function of format and problem in Experiment 2. The outcome 

distribution for the low variance option was 8(.3), 9(.4), 10(.3) for all problems. The outcome disitrbution for the 

high variance option was 1(.2), 10(.2), 11(.4), 12(.2) for Problem 1, and 6(.4), 7(.2), 8(.2), 18(.2) for Problem 2. 
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Figure 5 

  

Figure 5. Proportion of choices correctly predicted by the direction of the difference between the implied mean of 

the distribution of outcomes for the low and high variance options as a function of format, problem, and estimate 

type in Experiment 2. 
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Figure 6 

A. 

 

B. 

 

Figure 6. Average proportion of 80% confidence intervals that contain the true mean as a function of format and 

problem in Experiment 3. A: Low variance option. B: High variance option. The outcome distribution for the low 

variance option was 8(.3), 9(.4), 10(.3) for all problems. The outcome disitrbution for the high variance option was 

1(.2), 11(.8), 12(.2) for Problem 1, 7(.8), 17(.2) for Problem 2, 1(.4), 9(.2), 17(.4) for Problem 3, and 1(.2), 9(.6), 

17(.2) for Problem 4. The dark horizontal line represents 80% hit rate. 
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Figure 7 

A. 

 

B. 

 

Figure 7. Average estimated likelihood of each outcome as a function of format and problem in Experiment 3. A: 

Low variance option. B: High variance option. The outcome distribution for the low variance option was 8(.3), 9(.4), 

10(.3) for all problems. The outcome disitrbution for the high variance option was 1(.2), 11(.8), 12(.2) for Problem 

1, 7(.8), 17(.2) for Problem 2, 1(.4), 9(.2), 17(.4) for Problem 3, and 1(.2), 9(.6), 17(.2) for Problem 4. 
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Figure 8 

 

Figure 8. Proportion of high variance choices as a function of format and problem in Experiment 3. The outcome 

distribution for the low variance option was 8(.3), 9(.4), 10(.3) for all problems. The outcome disitrbution for the 

high variance option was 1(.2), 11(.8), 12(.2) for Problem 1, 7(.8), 17(.2) for Problem 2, 1(.4), 9(.2), 17(.4) for 

Problem 3, and 1(.2), 9(.6), 17(.2) for Problem 4. 
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Appendices 

Appendix A 

Figure A1 displays the relation between hit rate, interval width, and calibration for eight groups in a 

hypothetical prediction scenario. Each group comprises 5 participants. The thin dotted lines represent 

each individual’s 80% confidence interval. The solid vertical lines with filled circle caps represent the 

average 80% confidence intervals for each group. The normal distributions represent the average 

estimated distribution from each group. The leftmost distribution and interval located in the shaded area 

indicate the true outcome distribution. The thin horizontal line indicates the mean expected outcome. Hit 

rate is defined as “precise” (i.e., 80% of intervals contain the mean outcome), “over-precise” (i.e., less 

than 80% of intervals contain the mean outcome), or “under-precise” (i.e., more than 80% of intervals 

contain the mean outcome). Interval width is defined as “precise” (i.e., the interval is the same size as the 

one based on the true outcome distribution), “over-precise” (i.e., the interval is smaller than the one based 

on the true outcome distribution), or under-precise (i.e., the interval is larger than the one based on the 

true outcome distribution). Calibration is defined using qualitative labels of “low”, “moderate”, or “high”.  

The different groups show possible scenarios in which hit rate and interval width conflict, most 

notably for Group 2 and 7. For example, those in in Group 2 are considered: (1) under-precise in terms of 

hit rate because this group’s set of 80% confidence intervals includes the mean expected outcome more 

than 80% of the time (i.e., 5 out of 5 times); (2) over-precise in terms of interval width because the 

group’s average 80% confidence interval width is smaller than the 80% confidence interval derived from 

the true outcome distribution; (3) good calibration because the group’s average predicted probability of 

each outcome is close to the true probability of each outcome. In contrast, those in in Group 7 are 

considered: (1) over-precise in terms of hit rate because this group’s set of 80% confidence intervals 

includes the mean expected outcome less than 80% of the time (i.e., 3 out of 5 times); (2) under-precise in 

terms of interval width because the group’s average 80% confidence interval width is larger than the 80% 

confidence interval derived from the true outcome distribution; (3) poor calibration because the group’s 

average predicted probability of each outcome is far from the true probability of each outcome.  



55 
 

 

 

 

Figure A1. The relation between hit rate, interval width, and calibration for eight groups in a 

hypothetical prediction scenario.   
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Appendix B 

 

Screenshot of the question asked of participants to determine their confidence interval around average future sales 

for each worker in Experiment 1. The lower bound and upper bound were required to be integers between the values 

of 0 and 20. The lower bound was required to be smaller than the upper bound.  
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Appendix C 

 

Screenshot of the information provided to participants learning from experience-based information. There were nine 

other similar screens indicating the performance on each of ten days in both Experiment 1 and 2. 

  



58 
 

 

Appendix D 

 

Screenshot of the information provided to participants learning from description-based information in Experiment 2.  

 



59 
 

 

Appendix E 

For those in the description-followed-by-experience (henceforth, DE) group, worker performance 

was first summarily described (as for those in the description group) and then presented as individual 

outcomes (as for those in the experience group). For those in the experience-followed-by-description 

(henceforth, ED) group, worker performance was first presented as individual outcomes and then 

summarily described. Participants in both of these groups were made aware that the description and 

experience formats communicated the same information.  

The mean (and standard deviation of) the lower and upper bounds of the 90% confidence intervals 

and choice for each group in Experiment 1 is presented in Table A1. For the low variance option, there 

was no significant difference in hit rate between groups, χ2(N = 202) = 6.52, p = .09. However, planned 

follow-up contrasts revealed that hit rate was higher for those in in the experience group than those in the 

description group, χ2(N = 100) = 6.42, p = .01, but not the DE group (M = .84), χ2(N = 102) = 1.55, p = 

.21, nor the ED group (M = .84), χ2(N = 102) = 1.54, p = .21. For the high variance option, there was a 

significant difference in hit rate between groups, χ2(N = 202) = 12.64, p < .01. Planned follow-up 

contrasts revealed that hit rate was higher for those in the experience group than those in the description 

group, χ2(N = 100) = 10.94, p < .001, but not the DE group (M = .86), χ2(N = 102) = 3.18, p = .07, nor the 

ED group (M = .92), χ2(N = 102) = 0.73, p = .39. In addition, choices varied across groups, χ2(N = 202) = 

10.95, p < .05. Planned follow-up contrasts revealed that the proportion of high variance choices was 

higher for those in the experience group than those in the description group, χ2(N = 100) = 9.22, p < .01, 

the DE group (.43), χ2(N = 102) = 4.99, p < .05, and also the ED group (.39), χ2(N = 102) = 6.76, p < 

.001. 

In summary, we observed that those presented with both description and experience information 

tended to choose similarly to those presented with description-based information alone. This finding is 

somewhat inconsistent with previous research, which has reported that people tend to rely on experience 

rather than description-based information when both are available (Barron, Leider, & Stack, 2008; Jessup, 

Bishara, & Busemeyer, 2008; Lejarraga & Gonzalez, 2011; Weiss-Cohen, Konstantinidis, Speekenbrink, 
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& Harvey, 2016). One explanation for these somewhat conflicting observations is the amount of 

experience-based information available. In our studies, the sample was quite limited (i.e., 10 outcomes). 

In contrast, previous studies have used much larger samples (e.g., 100 in Lejarraga & Gonzalez, 2011). 

Therefore, it seems likely that experience-based information comes to overwhelm description-based 

information as more observations are made (Newell & Rakow, 2007).  

 

Table A1 

Mean (and Standard Deviation of the) Lower and Upper Bounds of the 90% Confidence 

Intervals and Choice for Each Group in Experiment 1 

 

 Description ED DE Experience 

N 49 51 51 51 

 Low Variance Option 

Lower Bound 6.1 (3.2) 6.5 (2.3) 5.9 (2.1) 6.3 (1.8) 

Upper Bound 10.1 (3.6) 10.6 (3.3) 10.0 (2.7) 10.0 (2.0) 

Hit Rate .74 .84 .84 .92 

 High Variance Option 

Lower Bound 3.5 (3.6) 4.0 (3.1) 3.9 (2.9) 5.4 (2.8) 

Upper Bound 10.6 (4.1) 11.5 (3.1) 10.6 (2.8) 10.8 (2.4) 

Hit Rate .74 .92 .86 .96 

Proportion Choosing the High Variance 

Option 
.35 .39 .43 .65 

Note: ED refers to the “Experience then description” group; DE refers to the “Description then experience” group. 
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Appendix F 

 

Screenshot of the information provided to participants learning from description-based information in Experiment 2.  
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Appendix G 

 

 

 

Screenshot of the question asked of participants to determine their estimated outcome distribution in Experiment 2. 
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Appendix H 

Instructions describing incentives associated with choices in Experiment 3: 

We want you to really engage with this study. Therefore, we are going to put some 

real cash on the line. 

For every 20 people who complete this study, we will select 1 of those people to be 

paid a cash bonus payment equal to the average 10-day future performance of one 

randomly selected worker you chose to keep. This bonus payment will range between 

$0 and $20. The winners can collect the cash from the researcher at the conclusion of 

the study. 

Instructions describing incentives associated with estimates in Experiment 3: 

In order to ensure you take this task seriously, we are also going to reward you with a 

potential cash payment based on your judgments. Basically, the more accurate your 

responses turn out to be, the higher your potential reward. This cash reward will be 

added to the payment going to the 1-in-20 people who end up being selected at the 

conclusion of the study.  

The formula that we will apply to calculate your accuracy is the summed absolute 

distance between your forecast and the actual distribution for each worker. This 

formula may appear complicated, but what it means for you is very simple: You get 

paid the most when you honestly report your best guesses about the expected number 

of sales for each day and each worker. The range of your payoffs for these judgments 

is between $0 to $4. 


